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SUMMARY 

The space of divergence-free vector functions with vanishing normal flux on the boundary is approximated by 
subspaces of finite elements having the same property. An easy way of generating basis functions in these 
subspaces is shown. 

KEY WORDS Divergence-free Functions Finite Elements Internal Approximation Stream Function 

INTRODUCTION 

The purpose of this paper is to construct finite element subspaces of the spaces of divergence-free 
functions. This is a frequently appearing and important step in a numerical simulation of some 
phenomena in continuum mechanics, electromagnetism, heat and fluid flow problems, etc. Finite 
element spaces of functions, the divergences of which exist in the sense of distributions, and 
various degrees of freedom (parameters) of these spaces are given, for instance, in References 1-4. 
However, adding the equilibrium condition div q = 0, we obtain constraints among the parameters 
of each element.5 These constraints can be removed, for instance by the method of Lagrange 
 multiplier^,^.' but this partly complicates a computational process. Therefore, the condition 
divq = 0 is mostly satisfied only for instance by least squares methods, 
penalty methods, or the integral of the divergence over each element is required to be zero, etc. 
However, any 'external' approximation of divq = 0 does not allow one to establish any upper 
(or lower) bound of the critical value of an energy functional. On the other hand, conforming 
FE methods,6 which are based on internal approximations, do not have this disadvantage. 
Moreover, the simultaneous use of the principles of minimum potential and complementary 
energy, e.g. to elliptic problems, yields even two-sided energy boundsI3 when using conforming 
FE methods. One can obtain also a posteriori error bounds and apply the hypercircle method. 
More details about these benefits of internal approximations of spaces of divergence-free functions 
can be found in References 13 and 14. 

In this paper we shall describe an internal finite element approximation of the following space 
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which appears in variational formulations of some considerable  problem^:^^' 2,15-1 

Ho(divo;R) = {qE(L2(R))dI(q,gradz)o = 0, VzeH'(R)}. (1) 
Here R c Rd, d = 2,3, is a bounded domain with a Lipschitz b ~ u n d a r y , ' ~  (. , .)o is the inner 
product in (L2(R))', 1 = 1,2,3, and Hk(!2) is the usual Sobolev space with the norm I I . I l k .  Note 
that for smooth qEHo(divo; a), by the Green formula (see (7) below) 

divq=O in R, n.q=O on dR, (2) 
where n is the exterior unit normal to the boundary dR. 

Let us recall (Reference 9, p. 25), that for two-dimensional domains 

Ho(divo;R) = curl{wEH'(R)ln.curl w = 0 on dR}, (3) 
where curl w = (&w, - 8 , ~ ) .  

Assume for a moment that R c R2 is simply connected and let wh c H;(R) be an arbitrary 
finite element space. Here H;(R) is the closure of CF(R) in the 1 1 . 1 1  , norm. Defining the space 
(see Reference 18, p. 44) 

Q h  = curl Wh, (4) 
we see by (3) that Qh c Ho(divo; R), and thus Qh is called the space of equilibrium finite elements. 

Obviously, if {wi} is a basis in Wh then {curl wi} is a basis in Qh, since the linear mapping 

curl: wh --f Q h  ( 5 )  
is bijective (its kernel is clearly zero). Moreover, for supports we obtain suppw' 2 supp curl w', 
i.e. the number of arithmetic operations is really very small when computing, for instance, scalar 
products of divergence-free basis functions. This method has recently been analysed and 
numerically testedl6,' and in this paper we give some generalizations to the three-dimensional 
case. Another approach to the description of an internal FE approximation of the space 
Ho(divo; R) for R c R3 is presented in Reference 17. The exact fulfilment of the condition div q = 0 
in the space of finite elements for two-dimensional problems can be found for instance in 
References 1, 7, 12, 19 and 20. 

SPACES O F  EQUILIBRIUM FINITE ELEMENTS IN R3 

First we introduce a ~ p a c e ~ . ~ , ~  of vector functions the divergence of which exists in the sense 
of distributions 

H(div;R) = {q~(L~(R))~1~f~L~(R):(q,gradz), + (f,z) = O,VZEH;(R)), 

and its subspace of divergence-free (solenoidal) functions 

H(divo; R) = {q~(L ' (n ) )~  I(q, grad z ) ~  = 0, VZEH;(R)}. 

Since the test functions z vanish on the boundary an, there are no conditions upon the normal 
flux n-q on dR (cf. (1) and (2)). Let now w = (wl, w2, w~)E(H' (R))~  and z~CF( l2)  be arbitrary. Then 
by the Green theorem 

(curl w, grad z ) ~  = (w, curl grad z ) ~  = 0, 

where curlw =(d2w3 -d,w,,d,w, -d ,~3 ,d ,w ,  -d,w,). Hence, using the density 
Hh(R) = CF(R), we obtain 

curl wEH(divO;R), for WE(H'(R))~. (6)  
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We further recall (Reference 9, p. 16), that the functional q+n-ql, defined on (C"(n))3 can be 
extended by continuity to a linear continuous mapping from the spaceH(div;Q) into H -  ' /2(aQ),  
the latter being the dual space to the space of traces H "'(aQ) of functions from H ' (Q). In this case, 
the Green formula is of the form 

(q,gradz), + (divq,~), = (n.q,z),,Vq~H(div;R),Vz~H'(R), (7) 

W= { w = ( w ~ , w ~ , w ~ ) E ( H ' ( Q ) ) ~ ~ w ~  = O  inR,n.curlw=O ondo}, (8) 

where ( denotes the duality pairing between H- ' /2(aQ) and H'I'(8Q). Introducing the space 

we prove the following theorem (cf. (3)). 

Theorem 1 

Let Q c R3 be a bounded domain with a Lipschitz boundary. Then 

Ho(divo; Q) = curl W. 

Proof. Let qEHO(div0;Q) be arbitrary. According to Reference 9, p. 29, there exists the 
so-called stream function w = (wl, w2, O)E(H'(Q))~ (not uniquely determined) such that 

q = curl w 

and we immediately see that n-curl w = n-q = 0 on aQ. 
Conversely, let W E  W be given. Then from the Green formula (7), (6) and (8) we obtain 

(curl w, grad z ) ~  = (- div curl w, z ) ~  + (necurl w, z) ,  = 0, VZEH'(Q), 

that is curl wEHO(divo;R) by (1). 

Remark 

By References 9 and 21 there exists a stream function w' for qEHo(divO;Q) so that w' is 
also divergence-free. However, this physically natural choice is not suitable for our purposes, as 
we shall see below, and thus in (8) we take simply w3 = 0 (instead of div w' = 0). The condition 
w3 = 0 may be replaced, of course, by w1 = 0 or w2 = 0. 

Now, let wh c W be an arbitrary finite element space whose functions are continuous and 
piecewise polynomial on some partition of Cl (h is the usual mesh parameter). Analogously to 
(4) we define the space of equilibrium finite elements as 

Qh = Curl wh 

and from Theorem 1 we see again that Qh c Ho(divo; Q). 

(9) 

Corollary 

Let {Wh} be a system of finite element subspaces of W such that the union UhWh is 
dense in W with respect to the I I . I I 1  norm. Then U h Q h  is dense in Ho(divo;Q) in the 

Prooj. For a given qEHo(divo;Q) there exists by Theorem 1 a function WEW (not uniquely 
determined) such that q=curlw. Let WhEWh be such that W h + w  in the I I . I I 1  norm and k t  
US define qh = Curl W h E Q h .  Then 

II .I10 norm- 

llq - qh 110 = Ibrl(w - wh) 110 < IIw - w h  11 1 + 0 for h + 0. 
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Note that Theorem 1 allows one to give a description of any subspace of H,(divo;R). So let 
Q’ c H,(divo; R) be an arbitrary subspace (e.g. a finite element subspace). Then by Theorem 1, 
Q’ must be always of the form Q‘ = curl W’ for a suitable subspace W’ c W. 

BASIS FUNCTIONS IN THE SPACE OF EQUILIBRIUM ELEMENTS 

In general, the mapping curl: Wh -, Qh is unfortunately not bijective in R3 (as it was in (5)). This 
would bring some difficulties with defining basis functions in Qh. Therefore, we shall now construct 
a subspace vh c W, such that 

curl: vh Qh 
is bijective. 

For simplicity, we shall give first some restrictions. 

Definition 

A domain R c R3 is said to belong to the class 2’ if 

(i) it is a bounded domain with a Lipschitz boundary, 
(ii) there exists a simply connected domain o c R2 and a positive function F :  o -, R’ (in general 

discontinuous) such that 

R =  { ( X ~ , X ~ , X J ) E R ~ I ( X ~ , X Z ) E ~ , O < X ~  <F(xi,x2)}. 
In order to introduce vh we further define 

80, = w x (0) c aa. 
We see that aR, lies in the (x,,x,,O) plane and it is the ‘lowest’ part of the boundary 8 0 .  For 
instance, a cube, cone or cylinder (with the base dR,) are in 2’. 

Henceforth, we shall require the following property of the space Wh: 

w E wh =>& E wh, (1 1) 

x2, x3) = w(xl, x2, O), (xl? x2, X 3 ) E R 9  (12) 

where 4 is defined as 

(the right-hand side is the trace of w on dQ,). Later we show that curl&=O in Q (cf. 
(14) below). Hence, n.curl&=O on aR and the condition (11) can be easily satisfied when 
employing e.g. prismatic or rectangular Co-elements.6,22 

Theorem 2 

Let R E P  and let wh c W satisfy (11). Then for 

vh={v~wW,Iv=o on dR,}, 

the mapping (10) is bijective. 

Proof. 

Injectivity 

Assume that curlv=O for some V E V , .  As R E Y ,  it is obvious that SZ is simply connected. 
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Consequently, there exists a scalar function SEH'(R) (unique apart from an additive constant) such 
that2 1*23 

v = grads. 

However, VE V c (H1(R))3 (i.e. ~ , ~ E H ' ( R ) ,  i = 1,2,3) and thus we even get SEH~(R).  By the 
Sobolev embedding theorem, s is continuous on Si (see, for instance, Reference 9, p. 11 1). It is 

s(xl, x2, x3) = s(xl, x2, O) + 83s(x1,x2, <Id< 

(13) 

1: 
= s(x1, x2, O), XEQ, 

since a3s=u3  =O. The condition v = O  on 8Ro implies that s is constant on 8Ro. Hence, 
by (13) the function s is constant on the whole R and thus v = 0. 

Surjectivity 

function w = (wl, w2, O)E wh (not uniquely determined) such that 
Let qEQh be arbitrary. According to (9) there exists a continuous piecewise polynomial 

q = curl w. 

We set 
v=w-&, 

where & is defined in (12). Then v = 0 on ano and from (11) we obtain that VEV, c wh. 

Moreover, we verify whether 

q = curl v 

holds. 
Clearly it suffices to prove that for & = ($1,$2,$3) we have 

curl&=O in R. (14) 
The first two components of the vector curl& are zeros, because $,=O and by (12) 

= 8 3 G 2  = O  in R. Next, we show that also the third component vanishes. Let 
x = (xl, x2,x3)eR be given and let us denote by no = (O,O, - 1) the exterior unit normal to 
8Ro c 8R. Using now (12) and the fact that n.curl w = 0 on 8R for WE wh, we come to 

81$2(x) - 8261M = ~,w,(x,,x2,0) - azwl(Xl,X2,0) 

= -no~curlw(x,,x2,0)=0. 

Under the assumptions of Theorem 2, we can introduce basis functions of the space 

Let {v'}:= be a basis in v h .  Then evidently 
Q h  = curl Vh. 

q' = curl v', i = 1,. . . , m, (15) 
are basis functions in Qh c H,(divo; a) since the linear mapping (10) is bijective (i.e. dim Qh = 
dim Vh). Moreover, we see that 

suppq' 2 supp v', i = 1,. . . , m. 
Of course, q' are not in general continuous in the whole of a. However, one can easily prove 
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by (7) that the normal component nf-q' is continuous at each common face f of any two adjacent 
elements, where nr is a normal to f (see also Reference 2, p. 62). 

Example 

elements, the ansatz-polynomials, which are of the form 
We introduce a typical shape of divergence-free basis functions derived from the usual trilinear 

CO + clxl + c2x2 + c3x3 + c4x1x2 + csX1x3 + c6x2x3 + c7xlX2x3 

on every rectangular element.6 Assume for simplicity that a uniform mesh (with the mesh 
size h) is given and let e.g. y = (0, h, h) be a nodal point in a. If y$8R then we can have two standard 
basis functions v', vi+'e V,, for some ie{ 1,. . . , m} such that 

suppv'=suppv'+'=[-h,h] x [0,2h] x [0,2h]. 

This support consists of eight elements. One of them is, for instance, K = [0, h] x [O,  h] x [0, h ] ,  
and we may immediately obtain 

vi = ( (h  - x1)x2x3, 0, 0)/h3 in K ,  

v i + l  =(O, (h  -xl)x2x3,0)/h3 in K .  

Now by (1 5 )  a direct calculation leads to 

q' = (O,(h - x1)x2, (xi - h)x3)/h3, in K ,  

q"' = ( ( X I  - h)X2,0, - X2X3)/h3, in K .  (17) 
Similarly we obtain qi and q"' on the other seven elements of suppv'. 

Suppose further that y = (0, h, h)~8R.  For simplicity let SZ = (0,l)  x (0,l) x (0,l). In this 
case, (8) yields 82~3(y)= 8302(y) for any veV,,, since (- 1,0,0) is the exterior unit normal to 
8R at y. Thus by (16) we find that vi~V,,(vi+'$V,,). The corresponding support of qi will consist 
of four elements only and e.g. qilK will be given by (17). 

REFERENCES 

1. M. Fortin, 'Approximation des fonctions a divergence nulle par la mtthode des elements finis', Proc. of the3rd Int. Conf. 

2. M. Kiiiek, 'An equilibrium finite element method in three-dimensional elasticity', Apl.  Mat. ,  27, 46-75 (1982). 
3. J. C. Nedelec, 'Mixed finite elements in R3', Numer. Math., 35, 315-342 (1980). 
4. J. M. Thomas, 'Sur I'analyse numerique des methodes d'eltments finis hybrides et mixtes', Thesis, Universite Paris VI, 

5. M. Fortin, 'Old and new finite elements for incompressible flows', 1nt . j .  numer. methods fluids, 1 ,  347-364 (1981). 
6. P. G. Ciarlet, The Finite Element Method for  Elliptic Problems, North-Holland Publishing Company, Amsterdam, 

7. B. M. Fraeijs de Veubeke and M. Hogge, 'Dual analysis for heat conduction problems by finite elements', 1nt.j. numer. 

8. V. Deschamps, P. Loisel and Y. Morchoisine, 'Recent developments in inhomogeneous turbulence numerical 

9. V. Girault and P. A. Raviart, Finite Element Approximation of the Nauier-Stokes Equations, Springer-Verlag, Berlin, 

10. P. Le Tallec, 'A mixed finite element approximation of the Navier-Stokes equations', Numer. Math.,35,38 1 -404( 1980). 
11.  P. Neittaanmaki and M. Kiiiek, 'Conforming FE-method for obtaining the gradient of a solution to the Poisson 

equation', in W. Hackbusch, (ed.), Efficient Solvers for  Elliptic Systems, Proc. of a GAMM-seminar,  Kiel, 1984, F. 
Vieweg & Sohn, pp. 74-86. 

Numer. Meth. in Fluid Mech., Paris, 1972, pp. 99-103. 

1977. 

New York, Oxford, 1978. 

methods eng., 5, 65-82 (1972). 

simulation', Proc. Conf. on Comput. Methods in Appl. Sci. and Engrg., INRIA, Versailles, 1985, pp. 251-264. 

Heidelberg, New York, 1979. 

12. R.  Temam, Nauier-Stokes Equations, North-Holland, Amsterdam, New York, Oxford, 1979. 
13. J. NeEas and I. HlavaEek, Mathematical Theory of Elastic and Elasto-plastic Bodies: an Introduction, Elsevier, 

Amsterdam, Oxford, New York, 1981. 



SPACES O F  DIVERGENCE-FREE FUNCTIONS 817 

14. J. Haslinger and I. Hlavatek, ‘Convergence of a finite element method based on the dual variational formulation’, Apl. 

15. C. Bernardi and A. Raugel, ‘A conforming finite element method for the time-dependent Navier-Stokes equations’, 

16. I. Hlavatek and M. Kiiiek, ‘Internal finite element approximations in the dual variational methods for second order 

17. J. C. Nedelec, ‘Eltments finis mixtes incompressibles pour I’equation de Stokes dans R3’, Numer. Math., 39, 97-112 

18. M. Kiiiek, ‘Conforming equilibrium finite element methods for some ellbtic dane  problems’, RAIRO Anal. NumPr., 

Mat., 21, 43-65 (1976). 

SIAM J .  Numer. Anal. (to appear). 

elliptic problems with curved boundaries’, Apl. Mat., 29, 52-69 (1984). 

(1982). 
- -  -~ 

17, 35-65 (1983). 
19. D. F. Griffths. ‘Finite elements for comDressible flow’. Math. Meth. ADDL Sci.. 1. 16-31 (1979). .. I ,  \ ,  
20. F. Thomasset, Implementation of Fin>te Element Methods for  Navier-Stokes Equations, Springer Series in 

21. C. Bernardi, ‘Formulation variationelle mixte des equations de Navier-Stokes en dimension 3’, Thdse de 3dme cycle 

22. P. G. Ciarlet and P. A. Raviart, ‘General Lagrange and Hermite interpolation in R” with applications to finite element 

23. Ch. Weber, ‘A local compactness theorem for Maxwell’s equation’, Math. Meth. Appl. Sci., 2, 12-25 (1980). 

Computational Physics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 198 1. 

(deuxieme partie), Universite Paris VI, 1979, pp. 146-176. 

methods, Arch. Rational Mech. Anal., 46, 177-199 (1972). 




