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SUMMARY

The space of divergence-free vector functions with vanishing normal flux on the boundary is approximated by
subspaces of finite elements having the same property. An easy way of generating basis functions in these
subspaces is shown.
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INTRODUCTION

The purpose of this paper is to construct finite element subspaces of the spaces of divergence-free
functions. This is a frequently appearing and important step in a numerical simulation of some
phenomena in continuum mechanics, electromagnetism, heat and fluid flow problems, etc. Finite
element spaces of functions, the divergences of which exist in the sense of distributions, and
various degrees of freedom (parameters) of these spaces are given, for instance, in References 1-4.
However, adding the equilibrium condition div q = 0, we obtain constraints among the parameters
of each element.’ These constraints can be removed, for instance by the method of Lagrange
multipliers,%7 but this partly complicates a computational process. Therefore, the condition
divq =0 is mostly satisfied only approximated,’-3~!2 for instance by least squares methods,
penalty methods, or the integral of the divergence over each element is required to be zero, etc.
However, any ‘external’ approximation of divq =0 does not allow one to establish any upper
(or lower) bound of the critical value of an energy functional. On the other hand, conforming
FE methods,® which are based on internal approximations, do not have this disadvantage.
Moreover, the simultaneous use of the principles of minimum potential and complementary
energy, e.g. to elliptic problems, yields even two-sided energy bounds'® when using conforming
FE methods. One can obtain also a posteriori error bounds and apply the hypercircle method.
More details about these benefits of internal approximations of spaces of divergence-free functions
can be found in References 13 and 14.

In this paper we shall describe an internal finite element approximation of the following space
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which appears in variational formulations of some considerable problems:®:2-15-17

H,(div®; Q) = {qe(L*(Q))|(q,grad ), =0, VzeH'(Q)}. 1)

Here Q= R?, d=2,3, is a bounded domain with a Lipschitz boundary,'? (.,.), is the inner
product in (L3(Q)Y, I=1,2,3, and H*(Q) is the usual Sobolev space with the norm || ||,. Note
that for smooth qe Hy(div®; Q), by the Green formula (see (7) below)

divg=0 in Q, n'q=0 on 0Q, 2)

where n is the exterior unit normal to the boundary 0Q.
Let us recall (Reference 9, p. 25), that for two-dimensional domains

H(div; Q) = curl {(we H*(Q)|n-curlw = 0 on 3Q}, 3)

where curl w =(d,w, — d,w).

Assume for a moment that Q = R? is simply connected and let W, < H3(Q) be an arbitrary
finite element space. Here H3(Q) is the closure of CP(Q) in the |||, norm. Defining the space
(see Reference 18, p. 44)

Qr,=curl W,, 4

we see by (3) that Q, = Hy(div®;Q), and thus Q, is called the space of equilibrium finite elements.
Obviously, if {w'} is a basis in W, then {curlw'} is a basis in Q,, since the linear mapping

curl: W,—Q, (5

is bijective (its kernel is clearly zero). Moreover, for supports we obtain suppw’ 2 supp curl w',
i.e. the number of arithmetic operations is really very small when computing, for instance, scalar
products of divergence-free basis functions. This method has recently been analysed and
numerically tested!5'® and in this paper we give some generalizations to the three-dimensional
case. Another approach to the description of an internal FE approximation of the space
H,(div®; Q) for Q = R3 is presented in Reference 17. The exact fulfilment of the condition divq =0
in the space of finite elements for two-dimensional problems can be found for instance in
References 1, 7, 12, 19 and 20.

SPACES OF EQUILIBRIUM FINITE ELEMENTS IN R3
First we introduce a space*°
of distributions
H(div; Q) = {qe(L*(Q))*|3 feL*(Q):(q, grad 2), + (£,2) = 0,Vze H;(Q)},
and its subspace of divergence-free (solenoidal) functions

H(div®%; Q) = {qe(L*(Q))*|(g, grad 2), = 0,Vze H} () } .

of vector functions the divergence of which exists in the sense

Since the test functions z vanish on the boundary 0Q, there are no conditions upon the normal
flux n-q on 0Q (cf. (1) and (2)). Let now w = (w,, w,, w3)e(H*(Q))® and ze CZ (Q2) be arbitrary. Then
by the Green theorem

(curl w, grad z), = (w,curl grad z), = 0,

where curlw=(d,w; —03w,,0;w, —0,w;,0,w, —3,w;). Hence, using the density
H(Q) = C¥(Q), we obtain

curlwe H(div%;Q), for we(H!(Q))3. (6)
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We further recall (Reference 9, p. 16), that the functional q—»n-q|,, defined on (C®({}))® can be
extended by continuity to a linear continuous mapping from the space H(div;Q) into H ~ }/2(9Q),
the latter being the dual space to the space of traces H */2(8Q) of functions from H ! (Q). In this case,
the Green formula is of the form

(g, grad z)o + (div q, z)y = {n"q,z ) 5, Vqe H(div; Q),Vze H(Q), )
where {*,*>,, denotes the duality pairing between H ~1/2(6Q) and H'/?(8Q). Introducing the space
W={w=(w,,w,,w3)e(H'(Q))*|w; =0 inQ,n-curlw=0 ondQ}, 8)

we prove the following theorem (cf. (3)).

Theorem 1
Let Q = R3? be a bounded domain with a Lipschitz boundary. Then
Hy(div®; Q) = curl W.
Proof. Let qeH,(div®;Q) be arbitrary. According to Reference 9, p.29, there exists the
so-called stream function w = (w,, w,,0)e(H'(Q))? (not uniquely determined) such that
g=curlw

and we immediately see that n-curlw =n-q =0 on Q.
Conversely, let weW be given. Then from the Green formula (7), (6) and (8) we obtain

(curlw, grad z), = (— divcurlw, z), + {n-curlw,z>,, =0, VzeH'(Q),

that is curl we H,(div®; Q) by (1).

Remark

By References 9 and 21 there exists a stream function w' for qeHy(div®; Q) so that w is
also divergence-free. However, this physically natural choice is not suitable for our purposes, as
we shall see below, and thus in (8) we take simply wy = 0 (instead of divw’ = 0). The condition
w3 =0 may be replaced, of course, by w, =0 or w, =0.

Now, let W, c W be an arbitrary finite element space whose functions are continuous and
piecewise polynomial on some partition of Q (h is the usual mesh parameter). Analogously to
(4) we define the space of equilibrium finite elements as

Q,=curl W, 9)

and from Theorem 1 we see again that Q, = H,(div’; Q).

Corollary

Let {W,} be a system of finite element subspaces of W such that the union U,W, is
dense in W with respect to the |||, norm. Then u,Q, is dense in Hy(div®;Q) in the
[I-llo norm.

Proof. For a given qeH(div®; Q) there exists by Theorem 1 a function we W (not uniquely
determined) such that q=curlw. Let w,eW, be such that w,—»w in the ||-|; norm and let
us define q; = curl w,eQ,,. Then

lq — gpllo = llcurl(w — w,) |l < [fw — w,[|; -0 for h—0.
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Note that Theorem 1 allows one to give a description of any subspace of H,(div®; Q). So let
Q' = H,y(div®;Q) be an arbitrary subspace (e.g. a finite element subspace). Then by Theorem 1,
Q' must be always of the form Q' = curl W’ for a suitable subspace W’ < W.

BASIS FUNCTIONS IN THE SPACE OF EQUILIBRIUM ELEMENTS

In general, the mapping curl: W, — Q, is unfortunately not bijective in R* (as it was in (5)). This
would bring some difficulties with defining basis functions in Q,,. Therefore, we shall now construct
a subspace V, = W, such that

curl: V,—» Q, (10)
is bijective.
For simplicity, we shall give first some restrictions.
Definition
A domain Q = R? is said to belong to the class & if

(i) it is a bounded domain with a Lipschitz boundary,
(ii) thereexists a simply connected domain w = R? and a positive function F: w — R (in general
discontinuous) such that '

Q = {(x1, %5, X3)eR?|(x1, X,)€0,0 < x3 < F(xy,%5)}.
In order to introduce V, we further define
0Qo =w x {0} c 0Q.

We see that 0Q, lies in the (x,, x,,0) plane and it is the ‘lowest’ part of the boundary 0Q. For
instance, a cube, cone or cylinder (with the base 0Q,) are in Z.
Henceforth, we shall require the following property of the space W,:

weW,=>weW,, (11)
where W is defined as
W(x 1, X5 X3) = W(X1,%2,0), (x4, X,,X3)€Q, (12)

(the right-hand side is the trace of w on 0Q;). Later we show that curl® =0 in Q (cf.
(14) below). Hence, n-curlw =0 on Q and the condition (11) can be easily satisfied when
employing e.g. prismatic or rectangular C°-elements.®-22

Theorem 2
Let Qe and let W, = W satisfy (11). Then for
V,={veW,|]v=0 on dQ,},
the mapping (10) is bijective.

Proof.

Injectivity

Assume that curlv =0 for some veV,. As Qe.%, it is obvious that Q is simply connected.
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Consequently, there exists a scalar function se H(Q) (unique apart from an additive constant) such
that?123
v=grads.

However, veV c(H'(Q))? (ie. d;sesHY(Q), i=1,2,3) and thus we even get seH*(Q). By the
Sobolev embedding theorem, s is continuous on & (see, for instance, Reference 9, p. 111). It is

s(xl’xlﬁ x3) = s(x13x25 0) + J a3S(xl’xz’ é)df
0

=s(xy,x5,0), xeQ, (13)

since d;8=v3;=0. The condition v=0 on 0Q, implies that s is constant on 0Q, Hence,
by (13) the function s is constant on the whole Q and thus v=0.

Surjectivity
Let qe@, be arbitrary. According to (9) there exists a continuous piecewise polynomial
function w=(w,, w,,0)e W, (not uniquely determined) such that
q=curlw.
We set
V=W—W,

where W is defined in (12). Then v=0 on 0Q, and from (11) we obtain that veV,c W,.
Moreover, we verify whether

q=curlv
holds.
Clearly it suffices to prove that for W = (,,%,,W;) we have
curlw=0 in Q. (14)

The first two components of the vector curl® are zeros, because W, =0 and by (12)
d;w, =0;W, =0 in Q. Next, we show that also the third component vanishes. Let
X =(xy,X,,X3)eQ be given and let us denote by n, =(0,0, — 1) the exterior unit normal to
0Q, = 0Q. Using now (12) and the fact that n-curl w =0 on 0Q for we W, we come to

al‘(‘)’z(x) - a2V?’1(X) = 01wy(xy,X3,0) — 0,w, (x4, X2,0)
= —nqy-curl w(x,, x,,0)=0.

Under the assumptions of Theorem 2, we can introduce basis functions of the space
Q,=curl V,.
Let {v'}™, be a basis in V. Then evidently

q' = curl v}, i=1,....,m, (15)

are basis functions in Q, = H,(div®; Q) since the linear mapping (10) is bijective (i.e. dim Q, =
dim V,). Moreover, we see that

suppq‘ S suppVv, i=1,..,m.

Of course, q' are not in general continuous in the whole of . However, one can easily prove
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by (7) that the normal component n;*q’ is continuous at each common face f of any two adjacent
elements, where n; is a normal to f (see also Reference 2, p. 62).

Example

We introduce a typical shape of divergence-free basis functions derived from the usual trilinear
elements, the ansatz-polynomials, which are of the form

Cot C1X1 +CaXy +C3X3 + C4X Xy + C5X X3 + CgXaX3 + CX1X5X3

on every rectangular element.® Assume for simplicity that a uniform mesh (with the mesh
size h) is given and let e.g. y = (0, h, h) be a nodal point in Q. If y¢ 0Q then we can have two standard
basis functions v\, v'* eV, for some ie{l,...,m} such that

suppv =suppv't! =[—h,h] x [0,2h] x [0,2k].

This support consists of eight elements. One of them is, for instance, K = [0, h]} x [0, h] x [0, k],
and we may immediately obtain

v =((h—x;)x,x3,0,0)/h*  inK,
Vit =(0,(h — x;)x,x3,0)/h3 in K. (16)
Now by (15) a direct calculation leads to
q' = (0,(h — x1)xp, (x; — h)x3)/h%, in K,
Q1 =((x; — h)x,, 0, — x,x3)/h3, in K. (17)

Similarly we obtain ¢’ and q'*! on the other seven elements of supp v'.

Suppose further that y=(0,h h)edQ. For simplicity let Q=(0,1) x (0,1) x (0,1). In this
case, (8) yields 0,v5(y) = 0;0,(y) for any veV,, since (—1,0,0) is the exterior unit normal to
0Q at y. Thus by (16) we find that v'e V,(v'* *¢V,). The corresponding support of q° will consist
of four elements only and e.g. ¢|¢ will be given by (17).
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